

Medium-sensitivity Unipolar Hall-Effect Switch

General Description

The KH3206 is a medium-sensitivity Unipolar Hall-effect switch with digital latched output, special designed for automotive, industrial and consumer applications.

The KH3206 combined with a voltage regulator, Hall voltage generator, small-signal amplifier, Schmitt trigger and open-drain output. The integrated voltage regulator permits operation from 3.8V to 30V and extended choice of temperature range. If the magnetic flux density is larger than operating point (B_{OP}), the output will be turned on; if it is less than releasing point (B_{RP}), the output will be turned off.

The KH3206 is available in TO-92S-3 and SOT-23-3 packages which are optimized for most applications.

Features

- 3.8V to 30V Wide Operating Voltage
- Bipolar technology
- Superior Temperature Stability: -40~+150°C
- Open drain Output
- 50mA Output Sink Current
- Lead Free package: TO-92S-3 and SOT23-3

Pin Assignments

TO-92S-3

SOT-23-3

Applications

- Non-Contact Switch
- Automotive Ignition
- Position Control
- Break ICs
- Revolution Detection
- Safe Alarm Device
- Textile Control system

V_{CC1} R_L Output OUtput OLµF V_{CC2}

Pin Descriptions

Pin Number		Pin Nama	Eurotion	
TO-92S-3	SOT-23-3	Fill Name	Function	
1	1	VCC	Supply Voltage	
2	3	GND	Ground Pin	
3	2	OUT	Output Pin	

Medium-sensitivity Unipolar Hall-Effect Switch

Functional Block Diagram

B for SOT-23-3

Absolute Maximum Rates (@TA=+25°C, Note 1)

Symbol	Parameter	Rating		Unit	
V _{cc}	Supply Voltage	-30 to	+40	V	
I _{cc}	Supply Current (Fault)	10)	mA	
Vout	Output Voltage	+40V DC max, OF -0.5V min., OFF	F condition only or ON condition	V	
I _{OUT}	Output Current	50		mA	
В	Magnetic Flux Density	Unlimited		Gauss	
р	Rower Dissinction	TO-92S-3	400		
PD		SOT-23-3	230	mvv	
Тор	Operation Temperature range	-40 to	+150	°C	
T _{STG}	Storage Temperature Range	-55 to +150		°C	
TJ	Junction Temperature Range	+150		°C	
-	ESD (Human Body Model) (Note 2)	4000		V	
_	ESD (Machine Model) (Note 2)	40	0	V	

Notes: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

2. Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

Recommended Operating Conditions

Symbol	Parameter	Min	Мах	Unit
V _{cc}	Supply Voltage	3.8	30	V
Т _{ОР}	Operating Temperature	-40	+150	°C

K 🗢 mpass

Medium-sensitivity Unipolar Hall-Effect Switch

Electrical Characteristics (@TA=+25°C, Vcc=12V, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{cc}	Supply Voltage	Operating	3.8	12	30	V
I _{cc}	Supply current	VDD=3.5 to 30V, Output Off	-	4	10	mA
ILE	Output Leakage current	Released	-	-	10	uA
		I _{OUT} =25mA	-	150	250	mV
V SAT	Saturation voltage	I _{OUT} =45mA	-	350	500	mV
Tr	Rise Time	RL=820 Ω ,CL=20pF	-	0.2	-	μs
T _f	Fall Time	RL=820 Ω ,CL=20pF	-	0.5	-	μs
Fsw	Maximum Switching Frequency	-	-	10	-	kHz

Magnetic Characteristics (@TA=+25°C, Vcc=	=12V, unless otherwise specified. Note 3)
---	---

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
B _{OP}	Operating Point	B>B _{OP} ,V _{OUT} =low(output on)	70	150	200	Gauss
B _{RP}	Releasing Point	B <b<sub>RP,V_{OUT}=high(output off)</b<sub>	50	100	170	Gauss
B _{HYS}	Hysteresis	B _{OP} - B _{RP} (Note 4)	20	50	80	Gauss

Notes: 3. The specifications stated here are guaranteed by design. 1 Gauss=0.1mT 4. B_{OP}=operating point (output turns on); B_{RP}=releasing point (output turns off)

Figure 1. Output Voltage vs. Magnetic Flux Density

Kømpass

Medium-sensitivity Unipolar Hall-Effect Switch

The TO-92S-3 package is north pole active and the SOT-23-3 package is south pole active. Removing the magnetic field (B=0) switches the output high.

Figure 2. Output Status vs. Magnetic Pole

Package Type	Parameter	Test Condition	Output
TO 025 2	North Pole	B>B _{OP}	High
10-925-3	Active	B <b<sub>RP</b<sub>	Low
SOT-23-3	South Pole Active	B>B _{OP}	High
		B <b<sub>RP</b<sub>	Low

Table 1. Output Status vs. Magnetic Flux Density

Test Conditions

Supply Current (Note 5, Note 6)

Note 5: I_{CC} represents the supply current. OUTPUT is open during measurement. Note 6: The device is put under magnetic field with B<B_{RP}.

K 🗢 mpass

Medium-sensitivity Unipolar Hall-Effect Switch

Output Saturation Voltage (Note 7, Note 8)

Note 7: The output saturation voltage V_{SAT} is measured at V_{CC} =3.8V and V_{CC} =30V. Note 8: The device is put under magnetic field with B>B_{OP}.

Magnetic Thresholds (Note 9, Note10)

Note 9: B_{OP} is determined by putting the device under magnetic field swept from $B_{RP(min)}$ to $B_{OP(max)}$ until the output is switched on. Note 10: B_{RP} is determined by putting the device under magnetic field swept from $B_{OP(max)}$ to $B_{RP(min)}$ until the output is switched off.

Ordering Information

Our Pb-free products with "G1" suffix in the part number are RoHS compliant and green.

Package	Temperature Range	Part Number	Marking ID	Packing Type
TO-92-S	10.1 0500	KH3206Z3-G1	320	1000/Bulk
SOT-23-3	-40 to +85°C	KH3206NTR-G1	CW	3000/Tape & Reel

Medium-sensitivity Unipolar Hall-Effect Switch

Marking Informaiton

(1) Package Type: TO-92S-3

First lines: Identification Code Second line: Date Code Y: Year 0 to 9 WW: Week 00 to 52 (Work week of molding)

Part Number	Package	Identification Code
KH3206Z3-G1	TO-92S-3	320

(2) Package Type: SOT-23-3

Part Number	Package	Identification Code
KH3206NTR-G1	SOT-23-3	CW

Package Outline Demension

1) Package Type: TO-92S-3

	TO-92S-3					
Dim	Min	Max				
Α	3.85	4.15				
a1	3°	Тур				
a2	6°	Тур				
a3	44°	46°				
a4	3°	Тур				
В	2.90	3.10				
С	1.42	1.62				
D	0.36	0.51				
E	0.44	4 Тур				
F	-0.05	0.10				
G	1.27	7 Тур				
Н	2.54	4 Тур				
J	0.36	0.51				
L	13.5	15.5				
Ν	0.67	0.83				
Р	1.40	1.80				
All Dimensions in mm						

Kømpass

Medium-sensitivity Unipolar Hall-Effect Switch

Sensor Location

2) Package Type: SOT-23-3

SOT-23-3						
Dim	Min	Max	Тур			
Α	0.35	0.50	0.38			
В	1.50	1.70	1.60			
С	2.70	3.00	2.80			
D	-	-	0.95			
G	-	-	1.90			
Н	2.90	3.10	3.00			
J	0.013	0.10	0.05			
К	1.00	1.30	1.10			
L	0.35	0.55	0.40			
М	0.10	0.20	0.15			
Ν	0.70	0.80	0.75			
α	0°	8°	-			
All	Dimens	ions in	mm			

Min/Max

Sensor Location

Medium-sensitivity Unipolar Hall-Effect Switch

Suggested Pad layout

(1) Package Type:SOT-23-3

Dimensions	Z	G	X	Y	E1	E2
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.600/0.142	1.600/0.063	0.700/0.028	1.000/0.039	0.950/0.037	1.900/0.075

K 🗢 mpass

Medium-sensitivity Unipolar Hall-Effect Switch

IMPORTANT NOTICE

THE KOMPASS SYSTEM MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). THE INFORMATION AND DATA CONTAINED IN THIS DOCUMENT ARE BELIEVED TO BE ACCURATE AND RELIABLE. THE SOFTWARE AND PROPRIETARY INFORMATION CONTAINED HEREIN MAY BE PROTECTED BY COPYRIGHT, PATENT TRADEMARK AND/OR OTHER INTELLECTUAL PROPERTY RIGHTS OF KOMPASS SYSTEM. ALL RIGHTS NOT EXPRESSLY GRANTED REMAIN RESERVED BY KOPASS SYSTEM.

KOMPASS SYSTEM AND ITS SUBSIDIARIES RESERVE THE RIGHT TO REVIEW THIS DOCUMENT AND TO MAKE MODIFICATIONS, ENHANCEMENTS, IMPROVEMENTS, CORRECTIONS OR OTHER CHANGES AT ANY TIME WITHOUT OBLIGATION TO NOTIFY ANY PERSON OR ENTITY OF SUCH REVISION OR CHANGES DESCRIBED HEREIN. FOR FURTHER ADVICE PLEASE CONTACT US DIRECTLY.

KOMPASS SYSTEM DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF THIS DOCUMENT OR ANY PRODUCT DESCRIBED HEREIN; NEITHER DOES KOMPASS SYSTEM CONVEY ANY LICENSE UNDER ITS PATENT OR TRADEMARK RIGHTS, NOR THE RIGHTS OF OTHERS. ANY CUSTOMER OR USER OF THIS DOCUMENT OR PRODUCTS DESCRIBED HEREIN IN SUCH APPLICATIONS SHALL ASSUME ALL RISKS OF SUCH USE AND WILL AGREE TO HOLD KOMPASS SYSTEM AND ALL THE COMPANIES WHOSE PRODUCTS ARE REPRESENTED ON KOMPASS SYSTEM WEBSITE, HARMLESS AGAINST ALL DAMAGES.

ANY INFORMATION AND DATA WHICH MAY BE PROVIDED IN THE DOCUMENT CAN AND DO VARY IN DIFFERENT APPLICATIONS, AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING PARAMETERS MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUTOMERS' TECHNICAL EXPERTS. ANY NEW ISSUE OF THIS DOCUMENT INVALIDATES PREVIOUS ISSUES.

KOMPASS SYSTEMS DOES NOT WARRANT OR ACCEPT ANY LIABILITY WHATSOEVER IN RESPECT OF ANY PRODUCTS PURCHASED THROUGH UNAUTHORIZED SALES CHANNEL.

SHOULD CUSTOMERS PURCHASE OR USE KOMPASS SYSTEM PRODUCTS FOR ANY UNINTENDED OR UNAUTHORIZED APPLICATION, CUSTOMERS SHALL INDEMNIFY AND HOLD KOMPASS SYSTEM AND ITS REPRESENTATIVES HARMLESS AGAINST ALL CLAIMS, DAMAGES, EXPENSES, AND ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED APPLICATION.

PRODUCTS DESCRIBED THEREIN MAY BE COVERED BY ONE OR MORE UNITED STATES, INTERNATIONAL OR FOREIGN PATENTS PENDING. PRODUCT NAMES AND MARKINGS NOTED THEREIN MAY ALSO BE COVERED BY ONE OR MORE UNITED STATES, INTERNATIONAL OR FOREIGN TRADEMARKS.

THIS DOCUMENT IS WRITTEN IN ENGLISH BUT MAY BE TRANSLATED INTO MULTIPLE LANGUAGES FOR REFERENCE. ONLY THE ENGLISH VERSION OF THIS DOCUMENT IS THE FINAL AND DETERMINATIVE FORMAT RELEASED BY KOMPASS SYSTEM.

LIFE SUPPORT

DO NOT USE OUR PRODUCTS IN LIFE-SUPPORTING SYSTEMS, MILITARY, AVIATION, OR AEROSPACE APPLICATIONS! UNLESS EXPLICITLY AGREED TO OTHERWISE IN WRITING BETWEEN THE PARTIES, KOMPASS SYSTEM'S PRODUCTS ARE NOT DESIGNED, INTENDED OR AUTHORIZED FOR USE AS COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANTS INTO THE BODY, OR OTHER APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH COULD OCCUR.

CUSTOMERS REPRESENT THAT THEY HAVE ALL NECESSARY EXPERTISE IN THE SAFETY AND REGULATORY RAMIFICATIONS OF THEIR LIFE SUPPORT DEVICES OR SYSTEMS, AND ACKNOWLEDGE AND AGREE THAT THEY ARE SOLELY RESPONSIBLE FOR ALL LEGAL, REGULATORY AND SAFETY-RELATED REQUIREMENTS CONCERNING THEIR PRODUCTS AND ANY USE OF KOMPASS SYSTEM PRODUCTS IN SUCH SAFETY-CRITICAL, LIFE SUPPORT DEVICES OR SYSTEMS, NOTWITHSTANDING ANY DEVICES- OR SYSTEMS-RELATED INFORMATION OR SUPPORT THAT MAY BE PROVIDED BY KOMPASS SYSTEM. FURTHER, CUSTOMERS MUST FULLY INDEMNIFY KOMPASS SYSTEM AND ITS REPRESENTATIVES AGAINST ANY DAMAGES ARISING OUT OF THE USE OF KOMPASS SYSTEM PRODUCTS IN SUCH SAFETY-CRITICAL, LIFE SUPPORT DEVICES OR SYSTEMS.

COPYRIGHT © 2015, KOMPASS SYSTEM

www.kompassys.com