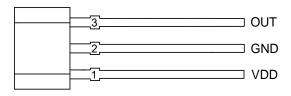
K 🗢 mpass

CMOS, Latch, High Sensitive Hall-Effect Sensor With Pull-up Resistor

General Description

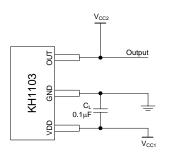
The KH1103 is an integrated Hall effect latched sensor with CMOS technology designed for electronic commutation of brush-less DC motor applications. The Device includes an on-chip Hall voltage generator with dynamic offset cancellation system for accurate magnetic sensing, a comparator that amplifiers the Hall voltage, and a Schmitt to provide switching hysteresis for noise rejection, and an output driver with a pull up resistor which connects to VDD. An internal band-gap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range.

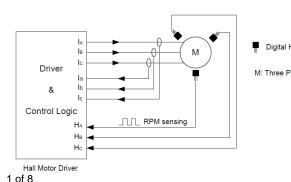
The KH1103 is designed to respond to alternating North and South poles. While the magnetic flux density is larger than operate point(B_{OP}), the output will be turned on(Low), the output is held until the magnetic flux density is lower than release point(B_{RP}), then turn off(High).

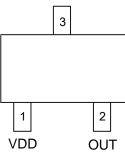

The KH1103 is available in TO-92S and SOT23-3 packages which are optimized for most applications.

Features

- CMOS technology Hall Effect Sensor
- 2.4V to 24V Wide Operating Voltage
- Built-in Pull-up resistor Structure
- Chopper-stabilized amplifier stage
- Superior Temperature Stability: -40~+125 °C
- 25mA Output Sink Current
- High Magnetic Sensitivity: B_{HYS}=60GS Typ.
- TO-92S(SIP-3L), and SOT23-3 package


Pin Assignments


(Front View)


Typical Applications Circuit

www.kompassys.com

GND

(Top View)

SOT23-3

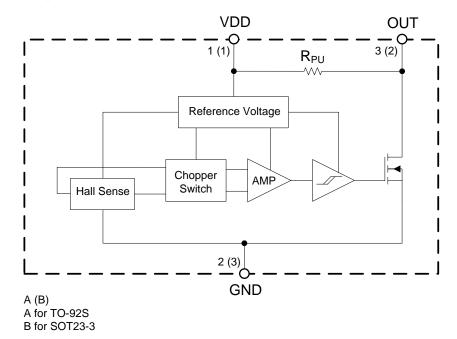
Applications

- Rotor Position Sensing
- Current Switch
- Encoder
- RPM Detection
- Brush-less DC Motor/Fan
- Revolution Counting
- Proximity Detection
- Speed measurement

Digital Hall Effect Sensor

M: Three Phase Hall Motor

KH1103 Rev. 2.1



CMOS, Latch, High Sensitive Hall-Effect Sensor With Pull-up Resistor

Pin Descriptions

Pin Number		Pin Name	Function	
TO-92S	SOT23-3		Function	
1	1	VDD	Supply voltage	
2	3	GND	Ground pin	
3	2	OUT	Output Pin	

Functional Block Diagram

Absolute Maximum Rates (@TA=+25°C, Note 1&2)

Symbol	Parameter		Rating	Unit
V _{DD}	Supply Voltage		28	V
I _{DD}	Supply Current (Fault)	Supply Current (Fault)		mA
V _{OUT}	Output Voltage(OFF Condit	Output Voltage(OFF Condition Only)		V
I _{OUT}	Output ON Current	Output ON Current		mA
В	Magnetic Flux Density	Magnetic Flux Density		Gauss
5	David Disain ation	TO-92S	230	
R _{TH}	Power Dissipation	SOT23-3	301	°C/W
T _{STG}	Storage Temperature	Storage Temperature		۵°
TJ	Junction Temperature		+150	°C

Notes: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

2. Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

K 🗢 mpass

CMOS, Latch, High Sensitive Hall-Effect Sensor With Pull-up Resistor

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V _{DD}	Supply Voltage	2.4	24	V
T _{OP}	Operating Temperature	-40	+125	°C

Electrical Characteristics (@TA=+25°C, V_{DD}=12V, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Supply Voltage	Operating	2.4	12	24	V
I _{DD}	Supply current	VDD=2.4 to 24V, Output Off	-	2.0	5.0	mA
I _{OFF}	Output Leakage current	Released, Output Off	-	_	10	uA
VDSon	Saturation Voltage	I _{OUT} =10mA	-	150	300	mV
VDS _{on}		I _{OUT} =20mA	-	350	500	mV
T _R	Rise Time	RL=820Ω ,CL=20pF	-	-	0.45	μs
T _F	Fall Time	RL=820Ω ,CL=20pF	-	_	0.45	μs
Fsw	Maximum Switching Frequency	-	-	10	_	kHz
R _{PU}	Internal Pull-up Resistor	-	24	27	30	Ω

Magnetic Characteristics (@T_A=+25°C, V_{DD}=12V, unless otherwise specified. Note 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
B _{OP}	Operating Point	B>B _{OP} ,V _{OUT} =low(output on)	5	30	80	Gauss
B _{RP}	Releasing Point	B <b<sub>RP,V_{OUT}=high(output off)</b<sub>	-80	-30	-5	Gauss
B _{HYS}	Hysteresis	B _{OP} - B _{RP} (Note 4)	30	60	90	Gauss

Notes: 3. The specifications stated here are guaranteed by design. 1 Gauss=0.1mT

4. B_{OP} =operating point (output turns on); B_{RP} =releasing point (output turns off)

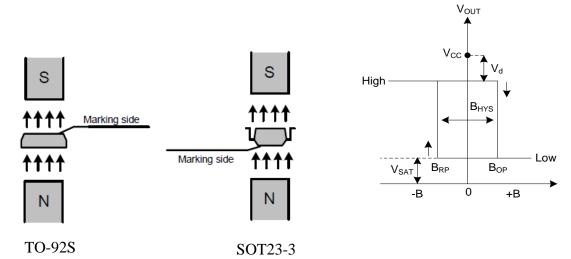


Figure 1. Output Voltage vs. Magnetic Flux Density

CMOS, Latch, High Sensitive Hall-Effect Sensor With Pull-up Resistor

Perfermance Characteristic

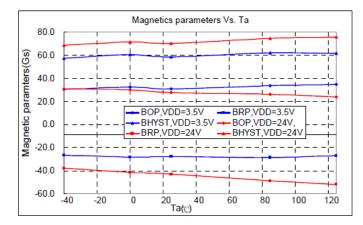
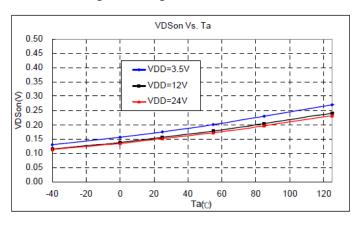



Figure 2. Magnetics Parameters vs. Ta

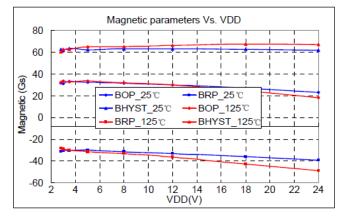


Figure 3. Magnetic Parameters vs. VDD

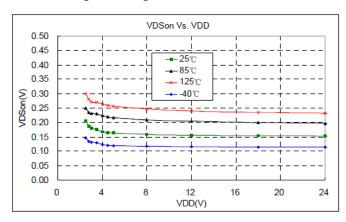


Figure 5. VDSon vs. Ta

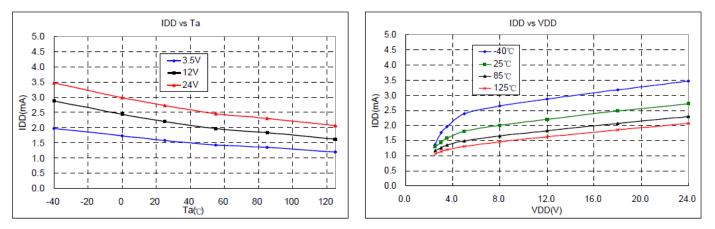


Figure 6. IDD vs. Ta

Figure 7. IDD vs. VDD

Kømpass

CMOS, Latch, High Sensitive Hall-Effect Sensor With Pull-up Resistor

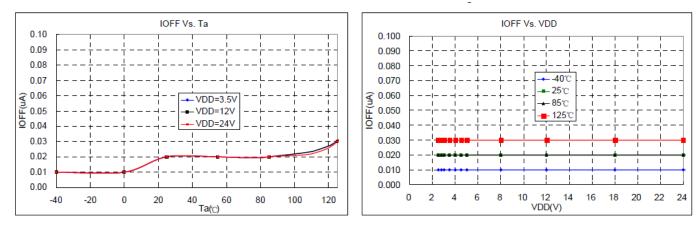
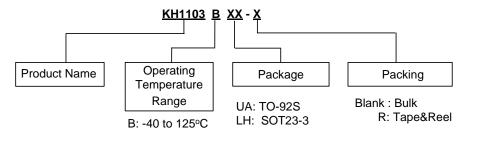
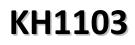



Figure 8. IOFF vs. Ta

Ordering Information

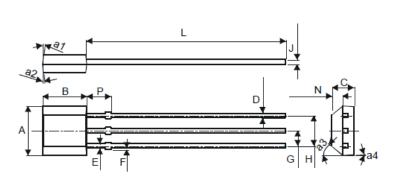

Package	Part Number	Marking ID	Packing Type
TO-92S	KH1103BUA	1103	1000/Bulk
SOT23-3	KH1103BLH-R	1103	3000/Tape&Reel

Marking Informaiton

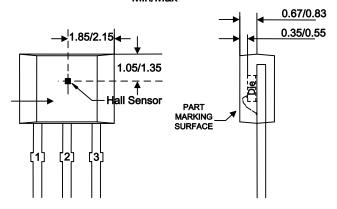
Package Type: TO-92S

First lines: Marking ID Second line: Date Code Y: Year 0 to 9 WW: Week 00 to 52 (Work week of molding) X: Internal Code

CMOS, Latch, High Sensitive Hall-Effect Sensor With Pull-up Resistor


Package Type: SOT23-3

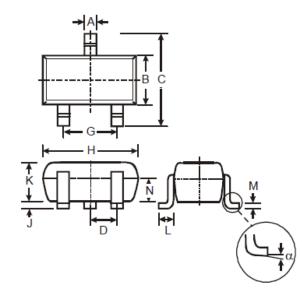
First lines: Marking ID


Package Outline Demension

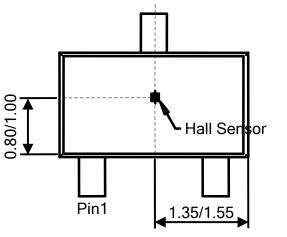
Package Type: TO-92S

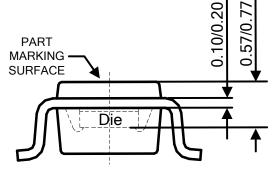
	TO-92S					
Dim	Dim Min Max					
Α	4.0 4.2					
a1	3°	Тур				
a2	6°	Тур				
a3	45°	' Тур				
a4	3°	Тур				
в	3.08	3.28				
c	1.48	1.68				
D	0.36	0.56				
E	0.44	4 Тур				
F	-0.05	0.20				
G	1.27	7 Тур				
H	2.54	4 Тур				
J	0.38	в Тур				
L	13.5	14.5				
Ν	0.71	0.81				
Ρ	2.60	3.00				
All Dimensions in mm						

Min/Max



Sensor Location


CMOS, Latch, High Sensitive Hall-Effect Sensor With Pull-up Resistor


Package Type: SOT23-3

SOT23-3					
Dim	Min	Max	Тур		
Α	0.35	0.50	0.38		
В	1.50	1.70	1.60		
С	2.70	3.00	2.80		
D	-	-	0.95		
G	-	-	1.90		
Н	2.90	3.10	3.00		
J	0.013	0.10	0.05		
ĸ	1.00	1.30	1.10		
L	0.35	0.55	0.40		
М	0.10	0.20	0.15		
N	0.70	0.80	0.75		
α	0°	8°	-		
	All Dimensions in mm				

Min/Max

Sensor Location

K 🗢 mpass

CMOS, Latch, High Sensitive Hall-Effect Sensor With Pull-up Resistor

IMPORTANT NOTICE

THE KOMPASS SYSTEM MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). THE INFORMATION AND DATA CONTAINED IN THIS DOCUMENT ARE BELIEVED TO BE ACCURATE AND RELIABLE. THE SOFTWARE AND PROPRIETARY INFORMATION CONTAINED HEREIN MAY BE PROTECTED BY COPYRIGHT, PATENT TRADEMARK AND/OR OTHER INTELLECTUAL PROPERTY RIGHTS OF KOMPASS SYSTEM. ALL RIGHTS NOT EXPRESSLY GRANTED REMAIN RESERVED BY KOPASS SYSTEM.

KOMPASS SYSTEM AND ITS SUBSIDIARIES RESERVE THE RIGHT TO REVIEW THIS DOCUMENT AND TO MAKE MODIFICATIONS, ENHANCEMENTS, IMPROVEMENTS, CORRECTIONS OR OTHER CHANGES AT ANY TIME WITHOUT OBLIGATION TO NOTIFY ANY PERSON OR ENTITY OF SUCH REVISION OR CHANGES DESCRIBED HEREIN. FOR FURTHER ADVICE PLEASE CONTACT US DIRECTLY.

KOMPASS SYSTEM DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF THIS DOCUMENT OR ANY PRODUCT DESCRIBED HEREIN; NEITHER DOES KOMPASS SYSTEM CONVEY ANY LICENSE UNDER ITS PATENT OR TRADEMARK RIGHTS, NOR THE RIGHTS OF OTHERS. ANY CUSTOMER OR USER OF THIS DOCUMENT OR PRODUCTS DESCRIBED HEREIN IN SUCH APPLICATIONS SHALL ASSUME ALL RISKS OF SUCH USE AND WILL AGREE TO HOLD KOMPASS SYSTEM AND ALL THE COMPANIES WHOSE PRODUCTS ARE REPRESENTED ON KOMPASS SYSTEM WEBSITE, HARMLESS AGAINST ALL DAMAGES.

ANY INFORMATION AND DATA WHICH MAY BE PROVIDED IN THE DOCUMENT CAN AND DO VARY IN DIFFERENT APPLICATIONS, AND ACTUAL PERFORMANCE MAY VARY OVER TIME. ALL OPERATING PARAMETERS MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY CUTOMERS' TECHNICAL EXPERTS. ANY NEW ISSUE OF THIS DOCUMENT INVALIDATES PREVIOUS ISSUES.

KOMPASS SYSTEMS DOES NOT WARRANT OR ACCEPT ANY LIABILITY WHATSOEVER IN RESPECT OF ANY PRODUCTS PURCHASED THROUGH UNAUTHORIZED SALES CHANNEL.

SHOULD CUSTOMERS PURCHASE OR USE KOMPASS SYSTEM PRODUCTS FOR ANY UNINTENDED OR UNAUTHORIZED APPLICATION, CUSTOMERS SHALL INDEMNIFY AND HOLD KOMPASS SYSTEM AND ITS REPRESENTATIVES HARMLESS AGAINST ALL CLAIMS, DAMAGES, EXPENSES, AND ATTORNEY FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PERSONAL INJURY OR DEATH ASSOCIATED WITH SUCH UNINTENDED OR UNAUTHORIZED APPLICATION.

PRODUCTS DESCRIBED THEREIN MAY BE COVERED BY ONE OR MORE UNITED STATES, INTERNATIONAL OR FOREIGN PATENTS PENDING. PRODUCT NAMES AND MARKINGS NOTED THEREIN MAY ALSO BE COVERED BY ONE OR MORE UNITED STATES, INTERNATIONAL OR FOREIGN TRADEMARKS.

THIS DOCUMENT IS WRITTEN IN ENGLISH BUT MAY BE TRANSLATED INTO MULTIPLE LANGUAGES FOR REFERENCE. ONLY THE ENGLISH VERSION OF THIS DOCUMENT IS THE FINAL AND DETERMINATIVE FORMAT RELEASED BY KOMPASS SYSTEM.

LIFE SUPPORT

DO NOT USE OUR PRODUCTS IN LIFE-SUPPORTING SYSTEMS, MILITARY, AVIATION, OR AEROSPACE APPLICATIONS! UNLESS EXPLICITLY AGREED TO OTHERWISE IN WRITING BETWEEN THE PARTIES, KOMPASS SYSTEM'S PRODUCTS ARE NOT DESIGNED, INTENDED OR AUTHORIZED FOR USE AS COMPONENTS IN SYSTEMS INTENDED FOR SURGICAL IMPLANTS INTO THE BODY, OR OTHER APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE OF THE PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH COULD OCCUR.

CUSTOMERS REPRESENT THAT THEY HAVE ALL NECESSARY EXPERTISE IN THE SAFETY AND REGULATORY RAMIFICATIONS OF THEIR LIFE SUPPORT DEVICES OR SYSTEMS, AND ACKNOWLEDGE AND AGREE THAT THEY ARE SOLELY RESPONSIBLE FOR ALL LEGAL, REGULATORY AND SAFETY-RELATED REQUIREMENTS CONCERNING THEIR PRODUCTS AND ANY USE OF KOMPASS SYSTEM PRODUCTS IN SUCH SAFETY-CRITICAL, LIFE SUPPORT DEVICES OR SYSTEMS, NOTWITHSTANDING ANY DEVICES- OR SYSTEMS-RELATED INFORMATION OR SUPPORT THAT MAY BE PROVIDED BY KOMPASS SYSTEM. FURTHER, CUSTOMERS MUST FULLY INDEMNIFY KOMPASS SYSTEM AND ITS REPRESENTATIVES AGAINST ANY DAMAGES ARISING OUT OF THE USE OF KOMPASS SYSTEM PRODUCTS IN SUCH SAFETY-CRITICAL, LIFE SUPPORT DEVICES OR SYSTEMS.

COPYRIGHT © 2015, KOMPASS SYSTEM

www.kompassys.com